MATHLETICS

finse

Series G - Time

Contents

Topic 1 - Telling time (pp. 1-8)
Date completed

- analogue and digital \qquad
\square
- 24 hour time \qquad

Topic 2 - Calculating time (pp. 9-17)

- time trails \qquad
\square
- word problems \qquad
\square
- using a stopwatch \qquad
\square
- whodunit? - solve \qquad

- connect clocks - apply \qquad / /

Topic 3 - Time applications (pp. 18-26)

- calendars \qquad
\square
- Australian time zones \qquad
\square
- world time zones \qquad
\square
- "don't forget to call home!" - apply \qquad
\square
- timelines - apply \qquad
\square
- time of your life - create \qquad

Series Authors:
Rachel Flenley Nicola Herringer

Telling time - analogue and digital

An analogue clock has two hands an hour hand and a minute hand.

A digital clock shows time using digits.
The hour always comes first.

1 Read the time on the analogue clocks and express as digital times:

a

b

c

d \square

2 Express these times on the digital clocks:
a Half past eight in the evening

b 13 minutes to midday

c 17 minutes past five in the morning

d 10 to 7 in the evening

(3) Show these digital times on the clocks:

Time

Telling time - analogue and digital

4 Look at the problems below. Indicate the answers as marked:
a I go to a movie that starts at 5:30. It runs for 2 hours. Circle the start time and put a box around the finish time.

Quarter to three

20 to 8

4:30

b I put a cake in the oven at 2:45. It takes 48 minutes to cook. Place a double line under the start time and a cross through the finish time.

5 You will need 3 different coloured pencils for this activity. Colour the times that match:

6 The time is 38 minutes after 4 o'clock. Show this time in as many ways as you can:

Telling time - 24 hour time

We can also use the 24 hour time model to express time.
We number the hours from 0 to 23 because there are 24 hours in a day.
When it gets to the 24 th hour, it starts again at 0 .
Can you think of situations when it is better to use 24 hour time rather than digital time?

1) Express these times in $\mathbf{2 4}$ hour time:

2 Use 24 hour time to write:
a $4: 25 \mathrm{am}$ \square b $9: 35 \mathrm{pm} \quad \square$
c $12: 25 \mathrm{am}$

d $12: 40 \mathrm{pm} \square$
f $2: 45 \mathrm{pm} \quad \square$
h 10:20 am \square
(3) Convert these $\mathbf{2 4}$ hour times into digital form. Write am or pm next to the time:
a \square $\square=$ \square
c \square
b

\square
d \square
\square

Telling time - 24 hour time

(4) Convert these times to 24 hour time then order them from earliest to latest:

5 This table shows the session times at the local cinema. Use the information to answer the following questions:

Movie	Screening times	Running time
Animated Family	$13: 15,15: 00,18: 00$	95 minutes
Spooky Movie	$19: 30$	110 minutes
Feel Good Flick	$12: 00,15: 30$	90 minutes
Shoot 'em up Classic	$20: 00$	130 minutes
Highschool Woes	$11: 00,13: 15$	120 minutes

a The first screening of Feel Good Flick is 12:00. What time does it finish?
b Which movie ends at 9:20 pm?
c Sarah arrives at the cinema at 2:45 pm. How long does she have to wait for the next screening of Animated Family?
d Matt walked out of the 11:00 session of Highschool Woes half an hour before the end. What time did he leave?

Telling time - timetables

Timetables are often used to show transport schedules. It is important to be able to read timetables as they have the information we need to plan journeys.

1 Study this bus timetable and then fill in the gaps.

Destination	Bus 1	Bus 2	Bus 3	Bus 4	Bus 5
Cleethorpes	0900	1000	1100	1200	
Grimsby	1015	1115	1215	1315	
Keelby Village	1100	1200			
Humber Bridge	1345	1445	1545		
Hull	1410	1510			1810

a How long does it take to get from Cleethorpes to Keelby Village?
b How long does it take to get from Keelby Village to Hull?
c How often does the bus leave from Cleethorpes?
d How often does the bus arrive in Hull?
e If I was leaving from Cleethorpes and I needed to get to Humber Bridge by 2:00 pm, which bus should I catch? \qquad
f If I was leaving from Keelby Village and I needed to be in Hull by $4: 30$ pm which bus should I catch? \qquad
g How long does the entire journey from Cleethorpes to Hull take? \qquad

Timetables are also used to show the scheduling of television programs.

2 Use this TV guide to answer the questions.

$17: 10$	Cartoons
$18: 00$	Comedy
$18: 30$	News
$19: 30$	Documentary
$20: 45-23: 15$	Film

a What is the shortest program?
b I am setting up my TV to record the documentary. How long should I record for?
c How much longer is the film than the documentary?

Telling time - timetables

3 Use the bus timetable below to answer the questions.
Bus Route - City Hall to Museum

Monday to Friday				
$\overline{\bar{T}}$ 근 	$\begin{aligned} & 0 \\ & \frac{0}{3} \\ & \frac{n}{2} \\ & \frac{\pi}{1} \end{aligned}$			
Morning				
---	6:30	6:35	6:38	6:45
-- -	7:10	7:15	7:18	7:25
-- -	-- -	7:50	7:53	8:00
- - -	8:20	- - -	8:30	8:35
9:00	9:02	9:07	9:10	9:17
9:45	9:47	9:52	9:55	10:02
10:30	10:32	10:37	10:40	10:47
Afternoon				
12:00	12:02	12:07	12:10	12:17
1:30	1:32	1:37	1:40	1:47
3:00	3:02	3:07	3:10	3:17
-- -	---	3:30	3:35	3:40
3:25	3:27	3:32	3:37	3:42
-- -	4:30	4:35	4:40	4:50
---	5:30	5:35	5:40	5:50
-- -	6:30	6:33	6:38	6:45
-- -	7:30	7:33	7:38	7:43

Saturday				
产				E J
Morning				
---	7:30	7:33	7:38	7:45
9:40	9:42	9:45	9:50	9:57
10:50	10:52	10:55	11:00	11:07
Afternoon				
12:05	12:07	12:10	12:15	12:22
2:35	2:37	2:40	2:45	2:52
---	5:05	5:08	5:13	5:18
---	7:30	7:33	7:38	7:43
---	10:15	10:18	10:23	10:28

Bus Fares (one way)	
Stops	Fares
1	$£ 1.80$
2	$£ 2.50$
3	$£ 3.50$

a Which bus does Iqbal need to catch on Thursday from City Hall to be at York Street at 9:52 am?
b Ali wants to be at Museum at 12:22 pm on Saturday. What time does she need to catch the bus at Harris Avenue?
c Lauren travelled from York Street to Museum. How much change would she get from a $£ 10$ note?
d Zac wants to travel from City Hall to Holt Street on Saturday morning. If he catches the 9:40 am bus, how long will his trip be?
e Minh travels from City Hall to Harris Avenue, where he stops for lunch.
Next, he travels from Harris Avenue to Museum. How much has he spent on bus fares?
\qquad

Five different families were travelling to Los Angeles for a holiday to one of the many theme parks. Their flights all left on the same day, but each family left at a different time and were going to a different theme park.

What to do

Find out each family's flight number, departure time and the theme park they went to. Read the clues below and use the grid to keep track of what you find out. Use a cross when you are sure 2 variables do not match and a tick when you know that they do. The first clue has been entered into the grid to show you how to do this.

1 Flight 938 left at 4:45 pm with the Herringers on board.

2 The Herringers and the family going to Seaworld were not on the flight leaving just before 6 pm .

3 The Nicholls family who were on flight 762 were not interested in going to Knott's Berry Farm or Disneyland.

4 Flight 938 was the flight of the family going to Universal Studios.
5 The Kirk family was the last of all the families to fly out on flight 165 on the way to Knott's Berry farm.

6 The Flenleys were on Flight 513 which left $1 \frac{1}{2}$ hours before flight 938.

Family	Flight Number					Time					Theme Park			
	762	938	513	165	$14: 38$	$15: 15$	$16: 45$	$17: 53$	SW	US	DL	KBF		
Nicholls		\times					\times							
Herringer	\times	\checkmark	\times	\times	\times	\times	\boldsymbol{V}	\times						
Flenley		\times					\times							
Kirk		\times					\times							

Race against time

This is a game for 2 players. You will each need a photocopy of this page. Cut out the cards. You and your partner should shuffle each other's cards really well. Hand the cards back.

Calculating time - time trails

We can use our knowledge of basic time facts to help us convert between hours, seconds and minutes.

```
By knowing these facts:
We can convert times such as:
1 minute = 60 seconds 3 minutes = 180 seconds ( }3\times60\mathrm{ )
    1 hour = 60 minutes
    1 day = 24 hours
    1 year = 52 weeks
1\frac{1}{2}}\mathrm{ hours = 90 minutes (60+30)
    1 week = 168 hours (7 x 24)
    2 years = 104 weeks
```

1 How many seconds or minutes? You may use a calculator if you wish:
a 7 minutes $=\square$ seconds
b 86 minutes $=\square$ seconds
c 360 seconds $=\square$ minutes
d 420 seconds $=\square$ minutes
e 240 seconds $=\square$ minutes
f 48 minutes $=$ \square seconds

2 Convert the following into more appropriate units:

a 240 minutes $=\square$ hours
b 360 minutes $=$ \square hours
c 360 seconds $=\square$ minutes
d 420 minutes $=\square$ hours
e 420 seconds $=\square$ minutes
f 540 seconds $=\square$ minutes

3 Use a calculator to help you work out how many:
a minutes in a day \qquad
I need to multiply to move from a larger unit to a smaller unit and divide to do the opposite!
b minutes in a week \qquad
c minutes in a year \qquad
d minutes you have been alive \qquad

4. Did you know that the giant tortoise has a life span of 177 years?

REMEMBER
How many days is this? \qquad

Calculating time - time trails

5 Draw hands on these clocks to show the time half an hour later:

a 10:45

6 Draw hands on these clocks to show the time half an hour earlier:

a 1:15

b $5: 40$

d
7:35

7 Complete these clocks to show the elapsed times:

	35 minutes	42 minutes	59 minutes	17 minutes
$\begin{aligned} & \text { t } \\ & \stackrel{y}{n} \end{aligned}$	3:35	1:14	9:07	6:32
$\begin{aligned} & \frac{-}{5} \\ & \frac{1}{5} \end{aligned}$				

	100 minutes	19 minutes	48 minutes	12 minutes
$\stackrel{t}{\leftrightarrows}$				
-	8:00	2:05	5:41	10:49

Calculating time - word problems

Timelines can help us with more difficult word problems.
Question: Tina went to watch a movie that started at 5:38 pm and finished at 7:10 pm. How long did the movie go for?

Steps: 1. First count on in hours in your head to get as close to the finish time as possible and write it in the first box. (The finish time is $7: 10 \mathrm{pm}$ so we need to add 1 hour to $5: 38 \mathrm{pm}$ make it 6:38 pm.)
2. Then count on in 10 minute and 2 minute jumps until you get to the finish time.

REMEMBER

Answer: 1 hour and 32 minutes

1 Show how you use the timeline by adding the jumps to each timeline.
a Grade 6 were doing a writing assessment that started at 11:20 am and finished as $1: 12 \mathrm{pm}$. How much time were they allowed?

b Tammy entered a shopping centre car park at 11:32 am and left at 3:26 pm.
How long was Tammy shopping for?

c Last Easter holidays, the Gilmore family got stuck in a traffic jam and were delayed. If they arrived at 5:52 pm and were due to arrive at $3: 10 \mathrm{pm}$, how long were they delayed?

d On Saturday I went to a film that started at $5: 15 \mathrm{pm}$ and finished at 7:52 pm. How long was this film?

Calculating time - word problems

2 Use these timelines to help work out the answers by working backwards:
a Amity's alarm clock went off at 7:42 am. This was 2 hours and 48 minutes too late so she missed her bus. What time should it have gone off?

b A plane arrived in London at 9:48 am. It had left La Rochelle, France 2 hours and 36 minutes earlier. What time did it leave La Rochelle?

\square

3 Figure out the scale used for these timelines and answer the questions:
a Work out the time each person arrived at the football match using the scale below and this clue: Charlie arrived 14 minutes later than Marty.

To work out the scale, count the spaces and divide into the number of minutes given.

b Work out what time the first person arrived at Dan's party using the scale below and this clue: Lunch was served at 12:50 pm.

Calculating time - using a stopwatch

The time on this stopwatch reads as:
3 minutes, 52 seconds and 42 hundredths of a second.

1 Explain what each number represents on the following stopwatches:
a 03:32:21
b 04:47:16 \qquad
c 05:57:49

2 Show the time on these stopwatches:
a 1 minute, 31 seconds and 99 hundredths of a second.
b 5 minutes, 16 seconds and 59 hundredths of a second.
c 2 minutes, 17 seconds and 89 hundredths of a second.

3 Show the final time on the stopwatch after adding these times together:
36 hundredths of a second
61 seconds
16 minutes
14 minutes
21 hundredths of a second

Calculating time - using a stopwatch

4 Jelena and Serena are running time trials in preparation for a marathon. For each trial find the time difference between the two girls:

Serena
a

Time difference
Jelena

02:18:17
b
 01:24:46

05:37:94
c

\qquad

5 How fast is your reaction time?
Find a partner and time each other with a stopwatch to do the following tasks:
a Touch each square in numerical order \qquad
b Touch each square in order of even numbers \qquad
c Touch each square in order of odd numbers \qquad
d Try each of the above with your other hand \qquad

6 Now, work with your partner to estimate and measure the time it takes to complete an activity.
Choose an activity such as race from the library to the office. Make your prediction, then try it out.

How close are you? Do your estimations get closer with practice?

Mrs Smith is livid ... furious ... about to burst a blood vessel. She has come home at 6 pm to find that one of her children has dropped pizza on the new cream sofa, leaving tomato sauce and ham everywhere. And as for the grease stains, she can't bear to even think about them.
Mr Smith was in the shed the whole afternoon and can cast no light on the matter. She will deal with him later.

She has hauled in all the children to find the culprit.

Read each alibi and find out who is lying. Someone has a gap in their timeline. And in that time, they managed to make the mess ... Use the timetable to show who is the guilty party. Note: They all finish school at 3:30 pm.

Jack says he couldn't have done it because: "School finished at 3:30 pm and I went straight to football practice. It takes 15 minutes to get to football practice and the practice lasted for an hour. Then it took 15 minutes to walk home. And Tom came home with me and we were on the PlayStation for an hour and then you came home! Ask Tom, he'll tell you we didn't leave the PlayStation."

Madison's alibi is: "I can't have done it! I had dance class after school in the gym for an hour. And then Li's mum picked me up and took us both out for ice cream. That took 30 minutes. And then I went back to Li's and we MSN'ed for 45 minutes. Then I walked home and that takes 15 minutes. So it wasn't me!"

Dakota claims innocence this way: "Well, it couldn’t have been me because I went next door to Nikki's after school for 1 hour and 45 minutes. And then I came home and got changed for judo which took 15 minutes. And then just as I finished, Nikki rang at 5:45 pm to say they would pick me up in 15 minutes to go to judo, so I am innocent!"

Whodunnit?

Time	Jack	Dakota	Madison
$3: 30-4: 00$			
$4: 00-4: 30$			
$4: 30-5: 00$			
$5: 00-5: 30$			
$5: 30-6: 00$			

This is a game for 2 players. You will each need a set of 3 counters of the same colour. You will need a photocopy of this page and the next page. Cut out the cards once you have copied the page.

The aim of this game is to get 3 counters in a line either diagonally, horizontally or vertically.
After you have cut out the cards on the next page, you place them in a pile turned over. Player 1 turns the first card over and places a counter on the matching clock face. Player 2 then has a turn and so on.

The winner is the first person is to get 3 counters in a line.

						$\left(\begin{array}{lll} 11 & 12 & 2 \\ 9 & & 3 \\ 8 & & 4 \\ 8 & 5 & 5 \end{array}\right.$
					$\left(\begin{array}{ll} 11 & 2 \\ 6 & \\ 8 & \\ 7 & 5 \end{array}\right.$	

The clocks with grey backgrounds are pm times and the clocks with white backgrounds are am times.

17

Time applications - calendars

(1) Calendars have been used by different civilisations for thousands of years. Fill in the rest of the dates on this calendar.

March 2010							
\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}	\mathbf{S}	
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	

June 2010							
\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}	\mathbf{S}	
	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	

September 2010							
\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}	\mathbf{S}	
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21						

December 2010							
\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}	\mathbf{S}	
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20							

2 Use the completed calendar to answer these questions:
a How many times does the end of the month fall on a Saturday?
b Which day of the week is the last day of the previous year?
\square
c Which day of the week is the first day of the following year?
Whar
\square
\square

Time applications - calendars

(3) You get an allowance from your parents provided you complete all your chores on time. They let you choose how you want to be paid.

Option 1: Receive $£ 50$ a month
Option 2: Receive $£ 12$ a week
Which option will you choose? \qquad
Use the calendar to work it out and show your reasoning.

4 Use the calendar for 2010 on page 18 to answer this question. What date and day of the week am I?
a I am in the second week of the third month, in 2010. I am a single digit. I am not Monday.

I am \qquad
b I am in the month with 30 days that comes straight after March. I am in the middle week and I am right before the weekend.

I am \qquad
c I am the last day of a summer month. I am not July or August.

I am \qquad

Time applications - Australian time zones

Australia has three time zones. New Zealand has one. Why do you think this is?
Central Standard Time is $\frac{1}{2}$ an hour behind Eastern Standard Time.
Western Standard Time is 2 hours behind Eastern Standard Time.
New Zealand is 2 hours ahead of Australian Eastern Time.

1 Use an atlas to find out the capital cities of each Australian state and the capital of New Zealand. Label the map.

2 Show the time in each zone based on the first clock.

3) You are in Brisbane and it is 7 pm . What time will it be in:

4 Now you are in Perth. What time will it be in:

Perth

Darwin

Brisbane

Wellington

Time applications - Australian time zones

Daylight Saving is used by New Zealand, New South Wales, Australian Capital Territory (ACT), Tasmania, Victoria and South Australia as a way of having more daylight hours after work.

When Daylight Saving begins, clocks are put forward 1 hour. When it ends, clocks are put back 1 hour. Queensland, Western Australia and the Northern Territory do not use Daylight Saving.

5 Use $\mathbf{2 4}$ hour time to record the corresponding times in each city during Daylight Saving time. Use the time zone information on page 20 to guide you.
a

\square

6 Complete these flight schedules in 24 hour time, noting the flying time. Again, use the time zone information on page 20 to guide you. Remember to take daylight saving into account.
a

Sydney to Wellington 3 hours flying time	
Depart Sydney	Arrive Wellington
1715	
1845	
1915	
2045	

c \begin{tabular}{|c|c|}

\hline \multicolumn{2}{|c|}{| Darwin to Sydney |
| :---: |
| 4 hours flying time |}

\hline Depart Darwin \& Arrive Sydney

\hline 1200 \&

\hline 1330 \&

\hline 1420 \&

\hline 1510 \&

\hline
\end{tabular}

b

Sydney to Brisbane $1 \frac{1}{2}$ hours flying time	
Depart Sydney	Arrive Brisbane
1130	
1330	
1530	
1730	

Time applications - world time zones

Lines of latitude and longitude form a grid that can be used to pinpoint any location in the world.

The equator is an imaginary line around the centre of the earth. It is measured at 0°.

Latitude is the measurement of distance in degrees north and south of the equator.

From the equator to the North and South Pole there are 90° of latitude. Lines of latitude run horizontally.

Longitude is the measurement of distance in degrees east or west of the Prime Meridian. The Prime Meridian divides the earth in half and passes through Greenwich, England at 0°. All lines of longitude pass through the North and South Poles. They run vertically. There are 180° of longitude on each side of the Prime Meridian.

On the opposite side to the Prime Meridian is the International Date Line.

Longitudinal lines to the left of the Prime Meridian give locations in the western hemisphere. Longitudinal lines to the right of the Prime Meridian give locations in the eastern hemisphere.

1 Use your own words to describe longitude and latitude to someone:
\qquad
\qquad
\qquad

2 You will need an atlas for this question. Find out the latitude and longitude of the following capital cities. Name their countries:

\square
c Helsinki is the capital of \square. The latitude and longitude are \square

This shows the lines of longitude on a flat map of the world. Each line represents 15° and equals 1 hour.
All times west of Greenwich are behind Greenwich Mean Time (GMT) and all times east of Greenwich are ahead of GMT. Greenwich is a place in London.
(3) Look at the lines of longitude that these cities of the world are closest to. Calculate these time differences.
a Los Angeles is \qquad hours ahead / behind Sydney.
b Shanghai is \qquad hours ahead / behind Cape Town.
c Buenos Aires is \qquad hours ahead / behind Greenwich in London.

Going west time is earlier than GMT and east is later than GMT.

- Buenos Aires

4 What time will it be at Greenwich when the time is:
REMEMBER
a 6 pm in Shanghai? \qquad b 10 am in Sydney?
d 5 am in Los Angeles? \qquad
\qquad
2
(5) Work out the missing times in these flight schedules:
a

Flights from Sydney to Cape Town 14 hours flying time	
Depart local time	Arrive local time
1 pm	

b

Flights from Los Angeles to London 11 hours flying time	
Depart local time	Arrive local time
6 am	

Midnight Midnig

"Don't forget to call home!"

Number on Die	Place
\square or \bullet	Los Angeles
0° or $\because:$	Shanghai
$\because 0$ or $\because \%$	Sydney

Number on Die	Time
\bullet	1000
\bullet	1400
\bullet	
$\bullet \bullet$	1700
$\bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$	1200
$\bullet \bullet$ $\vdots!$	2300

1 Roll 2 dice to get the time and place from which you

Look back to your world time zone map to work out time differences. Remember Greenwich is in London.

Time in London	Points
$0900-1700$	10 points
$1800-0800$	-10 points

The point scoring system is below. It pays to get the timing right as the winning contestant scores £1 000000 in prize money!

For this game, you will need the enlarged map on the previous page (page 24) and 2 dice. You are a contestant on the reality show, 'Don't Forget to Call Home!'" As well as the usual race around the world stunts, you have to call London every day between set hours. call. For example, if you roll 1 or 2 for the place and a 3 for the time, you are calling from Los Angeles at 1700.

2 Work out what time it is in London. Using the same example, the time in London would be 8 hours later which makes it 0100 . So you would score -10 points because the early hours of the morning is a bad time to call!

3 Keep track of your calls below. The person who gets the most points by the end of the table, wins!

Time and Place	Points	Running Tally

Draw a line from each invention to its corresponding place on the timeline.

700 BC button

589 BC toilet paper

a How many years are there between the invention of the pocket watch and the year it is now?
b How many years are there between the invention of the button and the Birth of Christ?
c How many years are there between the invention of the ice cream maker and the invention of chopsticks?

Time of your life create

Create a timeline of your life. You may show your whole life or an exciting segment. Make some rough plans below and then decide how you will present the timeline.

Think about what scale you will use and how large you want your final product to be.

Have a whole class presentation afternoon where you can wander around the room and learn about each other. You could organise a quiz and have a prize for the person who remembers the most about you.

